21 research outputs found

    Visual detection of blemishes in potatoes using minimalist boosted classifiers

    Get PDF
    This paper introduces novel methods for detecting blemishes in potatoes using machine vision. After segmentation of the potato from the background, a pixel-wise classifier is trained to detect blemishes using features extracted from the image. A very large set of candidate features, based on statistical information relating to the colour and texture of the region surrounding a given pixel, is first extracted. Then an adaptive boosting algorithm (AdaBoost) is used to automatically select the best features for discriminating between blemishes and non-blemishes. With this approach, different features can be selected for different potato varieties, while also handling the natural variation in fresh produce due to different seasons, lighting conditions, etc. The results show that the method is able to build ``minimalist'' classifiers that optimise detection performance at low computational cost. In experiments, blemish detectors were trained for both white and red potato varieties, achieving 89.6\% and 89.5\% accuracy, respectively

    Computing Realistic Terrains from Imprecise Elevations

    Get PDF
    It is ideal for triangulated terrains to have characteristics or properties that are realistic. In the imprecise terrain model, each vertex of a triangulated terrain has an imprecise eleva- tion value only known to lie within some interval. Under some objective function, the goal is to compute a precise terrain by assigning a single elevation value to each point, so that the objective function is optimized. This thesis examines various objectives, such as minimizing the number of local extrema and minimizing the terrain’s surface area. We give algorithms in some cases, hardness results in other cases. Specifically, we consider four objectives: (1) minimizing the number of local extrema; (2) optimizing coplanar features; (3) minimizing the surface area; (4) minimizing the maximum steepness. Problem (1) is known to be NP-hard, but we give an algorithm for a special case. For problem (2) we give an NP-hardness proof for the general case and a positive result for a special case. Meanwhile, problems (3) and (4) can be approximated using Second Order Cone Programming. We also consider versions of these problems for terrains one dimension down, where the output is a polyline. Here we give very efficient algorithms for all objective functions considered. Finally, we go beyond terrains and briefly consider the distant representatives problem, where the goal is to choose precise points from segments to be as far from each other as possible. For this problem, we give a parameterized algorithm for vertical segments, prove NP-hardness for unit horizontal segments, and show hardness of approximation for vertical and horizontal segments

    Distant Representatives for Rectangles in the Plane

    Get PDF
    The input to the distant representatives problem is a set of n objects in the plane and the goal is to find a representative point from each object while maximizing the distance between the closest pair of points. When the objects are axis-aligned rectangles, we give polynomial time constant-factor approximation algorithms for the L?, L?, and L_? distance measures. We also prove lower bounds on the approximation factors that can be achieved in polynomial time (unless P = NP)

    Universal bounds on the electrical and elastic response of two-phase bodies and their application to bounding the volume fraction from boundary measurements

    Full text link
    Universal bounds on the electrical and elastic response of two-phase (and multiphase) ellipsoidal or parallelopipedic bodies have been obtained by Nemat-Nasser and Hori. Here we show how their bounds can be improved and extended to bodies of arbitrary shape. Although our analysis is for two-phase bodies with isotropic phases it can easily be extended to multiphase bodies with anisotropic constituents. Our two-phase bounds can be used in an inverse fashion to bound the volume fractions occupied by the phases, and for electrical conductivity reduce to those of Capdeboscq and Vogelius when the volume fraction is asymptotically small. Other volume fraction bounds derived here utilize information obtained from thermal, magnetic, dielectric or elastic responses. One bound on the volume fraction can be obtained by simply immersing the body in a water filled cylinder with a piston at one end and measuring the change in water pressure when the piston is displaced by a known small amount. This bound may be particularly effective for estimating the volume of cavities in a body. We also obtain new bounds utilizing just one pair of (voltage, flux) electrical measurements at the boundary of the body.Comment: 5 figures, 27 page

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    The effect of agitation on the biodegradation of hydrocarbon contaminants in soil slurries

    No full text
    Slurry-based mineralisation assays are widely used to investigate contaminant biodegradation in soil; however, the importance of shaking speed on microbial degradation has not been considered. This study investigated the mineralisation of C-14-analogues of phenanthrene, hexadecane and octacosane, shaken at 0, 25 and 100 rpm. The results showed that the fastest rates and highest levels of mineralisation in 0 d aged soils were in the highly agitated conditions (100 rpm). However, the highest levels of mineralisation in 500 d aged soil were found in the gently shaken conditions (<= 25 rpm), with the levels of mineralisation significantly (p < 0.05) one third higher than under the highly agitated conditions (100 rpm). Consequently, estimation of the maximum levels of biodegradation of organic contaminants in aged soil systems should be considered under gentle mixing conditions

    Linking chemical extraction to microbial degradation of C-14-hexadecane in soil.

    No full text
    Chemical extractions have been shown to measure the biodegradable fraction of aromatic in soil; however, there is little research on the chemical prediction of aliphatic hydrocarbon degradation. The aim of this study was to investigate the potential for cyclodextrin extractions to predict hexadecane biodegradation in soil. Soils were amended with 10 or 100 mg kg(-1) of a model alkane n-hexadeccane and 100 Bq g(-1) C-14-n-hexadecane. correlations between the extents of mineralisation and extraction of the C-14-contaminant were determined. Solvent shake extractions and aqueous CaCl2 extractions were poor predictors of hexadecane bioaccessibility. However, the novel HP-alpha-CD shake extraction showed close correlation (r(2)=0.90, n=36, p&lt;0.05) to the mineralisation data. This extraction technique has the potential to be used to assess the biodegradable aliphatic hydrocarbon fraction in contaminated soils. (C) 2008 Elsevier Ltd. All rights reserved

    Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil.

    No full text
    The aim of this study was to investigate the prediction of 14C-phenanthrene and 14C-hexadecane biodegradation in the presence of other hydrocarbons in soil using β- and α-cyclodextrin (CD) solutions, respectively. Prediction of the biodegradation of 14C-phenanthrene using the β-CD extraction was robust under single, co-contaminant and multiple contaminant conditions (r2 = 0.92, slope of best fit line = 0.87, intercept = 7.24, n = 84). Prediction of 14C-hexadecane using the α-CD extraction was robust under single and co-contaminant conditions (r2 = 0.92, slope of best fit line = 0.97, intercept = 1.24, n = 60); however, the α-CD could not accurately predict 14C-hexadecane biodegradation in the presence of multiple contaminants. The presence of multiple contaminants enhanced 14C-hexadecane mineralisation, but did not enhance extractability. The results from this study provide further evidence for the application of HPCD extractions for the measurement of microbial accessibility in soil

    Importance of chemical structure on the development of hydrocarbon catabolism in soil.

    No full text
    A soil was amended with C-14-analogues of naphthalene, phenanthrene, pyrene, B[a]P or hexadecane at 50 mg kg(-1) and the development of catabolic activity was assessed by determining the rate and extent of (CO2)-C-14 evolution at time points over 180 days. The catabolic potential of the soil was hexaclecane &gt; naphthalene &gt; phenanthrene &gt; pyrene &gt; B[a]P, determined by the decrease in lag time (as defined by the time taken for 5% (CO2)-C-14 to be evolved from the minerialization of the C-14-labeled hydrocarbons). The results clearly showed the difference between constitutive and inducible biodegradation systems. The 0 day time point showed that hexadecane minerialization was rapid and immediate, with a 45.4 +/- 0.6% mineralization extent, compared with pyrene minerialization at 1.0 +/- 0.1%. However, catabolism for pyrene developed over time and after a 95 days soil-pyrene contact time, mineralization extent was found to be 63.1 +/- 7.8%. Strong regression was found (r(2) &gt; 0.99) between the maximum rates of mineralization and the partioning coefficient between the mineralized hydrocarbons, which may indicate linearity in the system.
    corecore